27 research outputs found

    Parallel solution of nonlinear contingency- constrained network problems

    Get PDF
    Abstract This paper presents a nonlinear stochastic programming formulation for a large-scale contingency-constrained optimal power flow problem. Using a rectangular IV formulation to model AC power flow in the transmission network, we construct a nonlinear, multi-scenario optimization formulation where each scenario considers failure an individual transmission element. Given the number of potential failures in the network, these problems are very large; yet need to be solved rapidly. In this paper, we demonstrate that this multi-scenario problem can be solved quickly using a parallel decomposition approach based on nonlinear interior-point methods. Parallel and serial timing results are shown using a test example from Matpower, a MATLAB-based framework for power flow

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors

    Get PDF
    Background: Limits on the frequency of whole blood donation exist primarily to safeguard donor health. However, there is substantial variation across blood services in the maximum frequency of donations allowed. We compared standard practice in the UK with shorter inter-donation intervals used in other countries. Methods: In this parallel group, pragmatic, randomised trial, we recruited whole blood donors aged 18 years or older from 25 centres across England, UK. By use of a computer-based algorithm, men were randomly assigned (1:1:1) to 12-week (standard) versus 10-week versus 8-week inter-donation intervals, and women were randomly assigned (1:1:1) to 16-week (standard) versus 14-week versus 12-week intervals. Participants were not masked to their allocated intervention group. The primary outcome was the number of donations over 2 years. Secondary outcomes related to safety were quality of life, symptoms potentially related to donation, physical activity, cognitive function, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin. This trial is registered with ISRCTN, number ISRCTN24760606, and is ongoing but no longer recruiting participants. Findings: 45 263 whole blood donors (22 466 men, 22 797 women) were recruited between June 11, 2012, and June 15, 2014. Data were analysed for 45 042 (99·5%) participants. Men were randomly assigned to the 12-week (n=7452) versus 10-week (n=7449) versus 8-week (n=7456) groups; and women to the 16-week (n=7550) versus 14-week (n=7567) versus 12-week (n=7568) groups. In men, compared with the 12-week group, the mean amount of blood collected per donor over 2 years increased by 1·69 units (95% CI 1·59–1·80; approximately 795 mL) in the 8-week group and by 0·79 units (0·69–0·88; approximately 370 mL) in the 10-week group (p<0·0001 for both). In women, compared with the 16-week group, it increased by 0·84 units (95% CI 0·76–0·91; approximately 395 mL) in the 12-week group and by 0·46 units (0·39–0·53; approximately 215 mL) in the 14-week group (p<0·0001 for both). No significant differences were observed in quality of life, physical activity, or cognitive function across randomised groups. However, more frequent donation resulted in more donation-related symptoms (eg, tiredness, breathlessness, feeling faint, dizziness, and restless legs, especially among men [for all listed symptoms]), lower mean haemoglobin and ferritin concentrations, and more deferrals for low haemoglobin (p<0·0001 for each) than those observed in the standard frequency groups. Interpretation: Over 2 years, more frequent donation than is standard practice in the UK collected substantially more blood without having a major effect on donors' quality of life, physical activity, or cognitive function, but resulted in more donation-related symptoms, deferrals, and iron deficiency. Funding: NHS Blood and Transplant, National Institute for Health Research, UK Medical Research Council, and British Heart Foundation

    Longer-term efficiency and safety of increasing the frequency of whole blood donation (INTERVAL): extension study of a randomised trial of 20 757 blood donors

    Get PDF
    Background: The INTERVAL trial showed that, over a 2-year period, inter-donation intervals for whole blood donation can be safely reduced to meet blood shortages. We extended the INTERVAL trial for a further 2 years to evaluate the longer-term risks and benefits of varying inter-donation intervals, and to compare routine versus more intensive reminders to help donors keep appointments. Methods: The INTERVAL trial was a parallel group, pragmatic, randomised trial that recruited blood donors aged 18 years or older from 25 static donor centres of NHS Blood and Transplant across England, UK. Here we report on the prespecified analyses after 4 years of follow-up. Participants were whole blood donors who agreed to continue trial participation on their originally allocated inter-donation intervals (men: 12, 10, and 8 weeks; women: 16, 14, and 12 weeks). They were further block-randomised (1:1) to routine versus more intensive reminders using computer-generated random sequences. The prespecified primary outcome was units of blood collected per year analysed in the intention-to-treat population. Secondary outcomes related to safety were quality of life, self-reported symptoms potentially related to donation, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin and other factors. This trial is registered with ISRCTN, number ISRCTN24760606, and has completed. Findings: Between Oct 19, 2014, and May 3, 2016, 20 757 of the 38 035 invited blood donors (10 843 [58%] men, 9914 [51%] women) participated in the extension study. 10 378 (50%) were randomly assigned to routine reminders and 10 379 (50%) were randomly assigned to more intensive reminders. Median follow-up was 1·1 years (IQR 0·7–1·3). Compared with routine reminders, more intensive reminders increased blood collection by a mean of 0·11 units per year (95% CI 0·04–0·17; p=0·0003) in men and 0·06 units per year (0·01–0·11; p=0·0094) in women. During the extension study, each week shorter inter-donation interval increased blood collection by a mean of 0·23 units per year (0·21–0·25) in men and 0·14 units per year (0·12–0·15) in women (both p<0·0001). More frequent donation resulted in more deferrals for low haemoglobin (odds ratio per week shorter inter-donation interval 1·19 [95% CI 1·15–1·22] in men and 1·10 [1·06–1·14] in women), and lower mean haemoglobin (difference per week shorter inter-donation interval −0·84 g/L [95% CI −0·99 to −0·70] in men and −0·45 g/L [–0·59 to −0·31] in women) and ferritin concentrations (percentage difference per week shorter inter-donation interval −6·5% [95% CI −7·6 to −5·5] in men and −5·3% [–6·5 to −4·2] in women; all p<0·0001). No differences were observed in quality of life, serious adverse events, or self-reported symptoms (p>0.0001 for tests of linear trend by inter-donation intervals) other than a higher reported frequency of doctor-diagnosed low iron concentrations and prescription of iron supplements in men (p<0·0001). Interpretation: During a period of up to 4 years, shorter inter-donation intervals and more intensive reminders resulted in more blood being collected without a detectable effect on donors' mental and physical wellbeing. However, donors had decreased haemoglobin concentrations and more self-reported symptoms compared with the initial 2 years of the trial. Our findings suggest that blood collection services could safely use shorter donation intervals and more intensive reminders to meet shortages, for donors who maintain adequate haemoglobin concentrations and iron stores. Funding: NHS Blood and Transplant, UK National Institute for Health Research, UK Medical Research Council, and British Heart Foundation

    Book Review

    No full text

    Process Economics for Commodity Chemicals. 2. Design of Flexible Processes

    No full text

    Design of Mixed-Solvent Processes for Chemisorption with Ultrahigh Recovery

    No full text
    corecore